Self-learning metabasin escape algorithm for supercooled liquids.
نویسندگان
چکیده
A generic history-penalized metabasin escape algorithm that contains no predetermined parameters is presented in this work. The spatial location and volume of imposed penalty functions in the configurational space are determined in self-learning processes as the 3N-dimensional potential energy surface is sampled. The computational efficiency is demonstrated using a binary Lennard-Jones liquid supercooled below the glass transition temperature, which shows an O(10(3)) reduction in the quadratic scaling coefficient of the overall computational cost as compared to the previous algorithm implementation. Furthermore, the metabasin sizes of supercooled liquids are obtained as a natural consequence of determining the self-learned penalty function width distributions. In the case of a bulk binary Lennard-Jones liquid at a fixed density of 1.2, typical metabasins are found to contain about 148 particles while having a correlation length of 3.09 when the system temperature drops below the glass transition temperature.
منابع مشابه
Strain-rate and temperature dependence of yield stress of amorphous solids via a self-learning metabasin escape algorithm
A general self-learning metabasin escape (SLME) algorithm (Cao et al., 2012) is coupled in this work with continuous shear deformations to probe the yield stress as a function of strain rate and temperature for a binary Lennard-Jones (LJ) amorphous solid. The approach is shown to match the results of classical molecular dynamics (MD) at high strain rates where the MD results are valid, but, imp...
متن کاملMechanics of Supercooled Liquids
Pure substances can often be cooled below their melting points and still remain in the liquid state. For some supercooled liquids, a further cooling slows down viscous flow greatly, but does not slow down self-diffusion as much. We formulate a continuum theory that regards viscous flow and self-diffusion as concurrent, but distinct, processes. We generalize Newton’s law of viscosity to relate s...
متن کاملLength scale for the onset of Fickian diffusion in super- cooled liquids
– The interplay between self-diffusion and excitation lines in space-time was recently studied in kinetically constrained models to explain the breakdown of the Stokes-Einstein law in supercooled liquids. Here, we further examine this interplay and its manifestation in incoherent scattering functions. In particular, we establish a dynamic length scale below which Fickian diffusion breaks down, ...
متن کاملGlassy Relaxation and Breakdown of the Stokes-Einstein Rela- tion in the Two Dimensional Lattice Coulomb Gas of Fractional Charges
– We present Monte Carlo simulation results on the equilibrium relaxation of the two dimensional lattice Coulomb gas with fractional charges, which exhibits a close analogy to the primary relaxation of fragile supercooled liquids. Single particle and collective relaxation dynamics show that the Stokes-Einstein relation is violated at low temperatures, which can be characterized by a fractional ...
متن کاملInvestigation of the dynamical slowing down process in soft glassy colloidal suspensions: comparisons with supercooled liquids.
The primary and secondary relaxation timescales of aging colloidal suspensions of Laponite are estimated from intensity autocorrelation functions obtained in dynamic light scattering (DLS) experiments. The dynamical slowing down of these relaxation processes are compared with observations in fragile supercooled liquids by establishing a one-to-one mapping between the waiting time since filtrati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 86 1 Pt 2 شماره
صفحات -
تاریخ انتشار 2012